SILS School, Muggia, september 2017

Synchrotron Radiation & Environmental Science

Pierfranco Lattanzi Retired scientist What is environmental science? (or, better, environmental sciences)

- very broad umbrella covering any phenomenon that may have an impact on life
- Includes practically *all* other sciences obviously life sciences – and physical sciences (chemistry, earth sciences, physics....)
- Truly *interdisciplinary* approach

The science of the complexity

- Typically complex systems, with many parameters of very different nature
- Typical non linear and/or chaotic effects!
- Butterfly effect (does the flap of a butterfly wings in Brazil set off a tornado in Texas?)
- Most studies, especially in the early stages, were descriptive/empirical

Molecular environmental science (MES)

speciation, distribution, reactivity, transformations, mobility, biogeochemical cycling, and bioavailability of environmental contaminants ultimately depend on molecular-scale structure and properties

Synchrotron-based MES

- ~ 40 yrs (mostly post 1990)
- Thousands of publications
- 2(3) dedicated beamlines SSRL, ALS (APS)
- Envirosync group (USA ~ 400 persons)
- Regular meetings (SES last in Argonne, 2014 – 110 attending, >70 presentations; next this October at Brookhaven)
- Envirosynch project in UK EnviroSync in Sweden...

MES research at SSRL

MES at ALS

Reviews in mineralogy and geochemistry, vol. 49 (2002)

Mineralogical Magazine, February 2008, Vol. 72(1)

More literature in the School notes

How do environmental scientists use synchrotron radiation?

- Localization of (often very dilute) contaminant species in (often very complex) environmental samples (X-ray imaging)
- "speciation" (chemical and structural state) of contaminant(s) (XAS, XRD)
- Surface and interface studies (SR-XPS, XSW, X-ray reflectivity, GIXAS....)
- Dynamic (time-resolved) in situ studies

mercury distribution in fish organs

Heavy metals in grass roots X-ray microtomography study

Microdistribution of metals in environmental samples

Figure 34. Combined fluorescence and (a) diffraction (b) measurements recorded on a soil ferromanganese nodule. The four top images are elemental maps obtained by µSXRF, and the four images on the bottom are mineral species maps obtained by rastering the sample in an XY pattern, collecting point XRD patterns, and integrating the diffracted intensity of the relevant (hkl) reflections (d-spacings in parenthesis). (from [42])

green: Si - red: Al yellow: Si + Al green: Zn - red: Na yellow: Zn + Na

Chemical speciation of contaminants

Figure 23. Hypothetical pathways for movement of S-SX Tank Farm leachates in the Hanford vadose zone.

XAS discrimination of chromium valence states

Cr(VI) highly toxic – Cr(IIII) moderately toxic

 Attempts at reduction Cr(VI) to Cr(III) in a contaminated soil by whey addition

Chemical speciation of plutonium by XAS

 Decommissioning of Rocky Flats nuclear facility

The mobility of plutonium is higly dependent on speciation Pu(IV): highly insoluble – can be mobilized only as particulate (e.g. by wind) Pu(VI): mobile in solution as PuO₂²⁺ species

Soluble transport models are not applicable to Pu migration in RFETS soils; particulate (i.e., erosion) transport is the dominant transport mechanism for Pu migration at the site.

This conclusion translates directly into very substantial cost savings, because focused efforts toward erosion modeling, and land configuration studies to control particulate transport. It also helped to define cleanup levels.

Thus Pu XAFS measurements developed into a decision-making tool that saved the company millions of dollars by focusing site-directed efforts in the correct areas, and aided the DOE in its efforts to clean up and close the RFETS.

UNIVERSITÀ DEGLI STUDI FIRENZE DIPARTIMENTO DI SCIENZE DELLA TERRA

Mercury speciation in *Pinus nigra* barks from Monte Amiata (Italy): An X-ray absorption spectroscopy study

presentation by Valentina Rimondi at SIMP-SGI-SOGEI-AIV meeting, september 2017

Tree barks: a new tool for atmospheric Hg biomonitoring?

✓ Easy species recognition
 ✓ Low systemic uptake from soil
 ✓ Year-round ubiquity
 ✓ Low cost sampling

Tree barks: a new tool for atmospheric Hg biomonitoring?

- Very little literature
 Low levels of pollutant accumulation
- Poor knowledge on the mechanism(s) of Hg accumulation on barks

Monte Amiata Hg district

Chiarantini et al. 2016- Sci. Total Environ. 569-570; 105-113

Pinus nigra barks: mining and geothermal ____areas

High Hg concentration: up to 8 mg/kg

Reference sites

Highly polluted sites

Decreasing Hg from ouside to inside layers Increasing Hg in *intermediate* layers

Change in Hg speciation?

Reference standards

References: Hg sulfides, oxides, chlorides, hydroxyls and carboxyls (tannic acid and cellulose), sulfur (thiols, sulfides, sulfates), methylate, and glutarate bondings

Results

Meaningful fit with only four reference compounds: metacinnabar, Hg bound to tannic acid, or Hg cysteine, and Hg⁰

Results

Conclusions

- Metacinnabar and Hg(0): original species deposited from atmosphere
- Hg-cysteine and Hg-tannic: interaction between inorganic species and bark surface
- Mercury bound to «soft» donor as thiols in cysteine-like molecules (proteins)
 - Mercury bound to OH and COOH groups in tannins

Investigation of Zn speciation in biominerals by synchrotron radiation techniques

Daniela Medas

Department of Chemical and Geological Sciences, University of Cagliari email: dmedas@unica.it - daniela.medas@yahoo.it

ABANDONED MINING AREAS IN SARDINIA (ITALY) • ~ 100 abandoned mine sites.

 Huge problems of heavy metals dispersion.

Zn EXTREME ENVIROMENT

Ingurtosu Pb-Zn mine closed on 1968 after more than 100 years of intense activity.

- \checkmark No remediation actions.
- Zn from ppb to several hundreds of ppm in waters.

Piscinas beach (downstream of the mine dump)

Tailings transported by the Naracauli river on this beach

BIOMINERALIZATION AT NARACAULI

Two different types of biomineralization

Hydrozincite Zn₅(CO₃)₂(OH)₆

Amorphous Zn-Si

Hydrozincite $Zn_5(CO_3)_2(OH)_6$

Late spring – early summer Scytonema sp. Tubules: 30-50 µm Crystalline Summer Leptolyngbya frigida Tubules: ≈ 2 µm Amorphous (XRD)

Amorphous Zn-Si

May 7, 2009 No biofilm

May 21, 2009 New biofilm biomineral restarts

August 19, 2009 Mineralized biofilm

IMPORTANCE OF BIOPRECIPITATES- FIELD STUDIES

biominerals: natural filters of heavy metal contamination

THE ZINC SILICATE BIOMINERALIZATION: conventional XRPD and <u>S-R XRPD</u>

Dominantly amorphous nature of the biomineral Minor contribution from quartz and other phyllosilicates

ZINC K-EDGE X-RAY ABSORPTION SPECTROSCOPY (1)

Similar XANES spectra: coordination chemistry is largely the same

ZINC K-EDGE X-RAY ABSORPTION SPECTROSCOPY (2)

	CN	R (Å)		CN	R (Å)	
Hemim	orphite -	- reference				
compo	ound		Biomineral samples (N = 9)			
ZnO	4	1.93				
ZnSi	3	3.24	ZnO	4	1.95±0.01	
ZnZn	4	3.40				
	•	rystal Structure	ZnSi	1	2.99±0.03	
Databas	se)					
			ZnZn	1.5±0.5	3.27±0.03	

ZnO₄ tetrahedra are not simply dispersed into the structure, but form a Zn-rich mineral phase analogous to hemimorphite

BIO-GEO INTERACTIONS AT THE MINERAL ROOT INTERFACE

Attenuation can occur also via processes at the rhizosphere.

 Synchrotron techniques allow us to achieve molecular scale
 knowledge on dispersion and attenuation of
 metals into the
 environment.

INGURTOSU FIELD TRIAL – phytostabilization by using pioneer species and selected soil microbes

An area of about 7.50 m x 22.50 m on the field site was divided into 27 subplots.

Soil vitalizing microbes:

✓ Bacteria (N-fixation).
 ✓ Mycorrhiza (P plant uptake).
 Inorganic amendments
 ✓ red ViroMine[™].

What effect on rhizosphere processes?

 ✓ decreasing or preventing metal mobility (stabilization)
 ✓ biomineralization.
 ✓ Others.....

> *Euphorbia* pithyusa L.

DISTRIBUTION OF ELEMENTS IN Euphorbia pithyusa L. ROOTS

Reflected Light Microscopy image

Root epidermis: mainly Si and AI. Inner part (vascular tissue with the remaining degraded cortical cells): high concentration in C.

DISTRIBUTION AND SPECIATION OF ZINC IN ROOTS

Soft X-ray Microscopy combined with Low Energy XRF mapping:

EXAFS ANALYSIS

	Euph (mycorrhiza + bacterial cons.)			CN	R (Å)
Euph_contr ol			entire root (N = 5)		
			ZnO	4.9±0.6	2.01
			ZnSi	1.6±0.8	2.97
i)		1) 10)		2.7±0	3.85
8000	32000 4	4800 32000	Euph_CP1a		
	2400 3 0 160	360 4 240 00 240 160	ZnO	4.5(5)	2.01(1)
Al 20 Si	00 80		ZnZn]*	3.24(1)
	0	Si 800 8 160 48	ZnZn	2*	3.41(1)
30	64 48				
		30 24	ZnŌ	4.6(5)	2.03(1)
Zn ¹⁰ Fe	¹⁶ Zn ⁴	⁴⁰ Fe ¹² ₀	ZnSi	0.9(1)	3.02(1)

No variation in Zn speciation for the different soil treatments

SUMMARY

- Adaptation of bacterial life along the stream and variation in bioprecipitates: natural filters.
- Conventional XRPD and SR-XRPD (synchrotron radiation XRPD) and EXAFS (extended X-ray absorption fine structure) investigation:
 - Amorphous nature of the biomineral.
 - Zn coordination environment similar to hemimorphite.
- PLANT-ROOT INTERFACE

BIOMINERAL

- ✓ Some selected plants grow on mine waste substrates.
- Al and Si play a significant role in the interaction between soil and plant roots: biomineral processes.
- Zn is concentrated in an external rim made of Si, Al and O forming a Zn-silicate.